DYSTRYBUTOR

TECHNICAL
GRZEGORZ TĘGOS

62-600 Koło, ul. Toruńska 212 tel. 0-63/2725478 / fax. 0-63/26 16258
www.technical.pl biuro@technical.pl

Sklep internetowy www.sklep.technical.pl

Precyzyjne waly CARDANA z szybkozlaczem dol000 i 4000 obr/min

Antriebselemente

Precision Universal Joint

PRECISION UNIVERSAL JOINT

Sit universal joints with plain or needle roller bearings Type "E" - "H" (DIN 808)

Of this series both single and double joints are available. Types E are with sliding bushes while type H has needle roller bearings.

Joints with plain bearings are available in 2 versions:

- types E to DIN 808;
- types EB to DIN 808/7551

Joints with roller bearings are available in 2 versions:

- types H to DIN 808;
- types HB to DIN 808/7551

They all consist of a star wheel core and 2 half joints with fork ends. Between the pins of the star wheel and the holes of the forks, 4 wear-resistant sliding bushes (for type E) or roller bearings (type H - high speed) are fitted in.
The 4 bushes have holes for lubrication and each one contains a grease reserve.
The hermetic structure prevents lubricant losses and impurity entry.
Neither lubrication or maintenance is required for type H (high speed joints with roller bearings) as their bearings are lubricated for life.

Joints with plain bearings - type E - are for middle-low speeds and where there are shock loads. For high speeds and relatively low torques types with roller bearings (H) are recommended. Both versions offer high efficiency, silent running, low friction, coefficient at competitive prices.
All rubbing surfaces are hardened and ground.
Maximum working angle is 45° for single joints and 90° for double joints.
Maximum speed is 1.000 rpm for type E , while type H can exceed 4.000 rpm .

All versions are also supplied in telescopic versions.

Precision joints

Series "ER" (sliding bushes) - "HR" (needle roller bearings)

- Type "ER": max. speed 1.000 rpm.
- Type "HR": max. speed 4.000 rpm .
- Max. angle 45°.

Type	Type	$\begin{gathered} d \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} 2 \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} 1 \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{e} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} f \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{b} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{SW} \\ {[\mathrm{~mm}]} \end{gathered}$
GU02ER	-	8	16	52	26	14	9,5	3,5	6,3	2	9	8
GU03ER	GU03HR	10	22	62	31	17	11,5	4	8,7	3	11	10
GU04ER	GU04HR	12	25	74	37	21	13,5	4	11	4	13,3	12
GU05ER	GU05HR	14	25	74	37	21	13,5	4	13	5	15,3	14
GU1ER	GU1HR	16	32	86	43	24	14	6,35	14,8	5	17,3	16
GU2ER	GU2HR	18	36	96	48	28	19	8	16	6	19,8	18
GU3ER	GU3HR	20	42	108	54	31	19	8	18	6	22,8	20
GU4ER	GU4HR	22	45	120	60	34	20,5	10	20	6	24,8	22
GU5ER	GU5HR	25	50	132	66	38	20,5	10	23	8	28,3	25
GU6ER	GU6HR	30	58	166	83	49	25	10	28	8	33,3	30

